Organic light-emitting transistors using concentric source/drain electrodes on a molecular adhesion layer

Clara Santato
CNR, ISMN, Via Gobetti 101, 40129 Bologna, Italy

Fabio Cicoira
CNR, ISMN, Via Gobetti 101, 40129 Bologna, Italy and INRS-EMT, Université du Québec, 1650 Boulevard Lionel Boulet, J3X 1S2 Varennes (QC), Canada

Piero Cosseddu and Annalisa Bonfiglio
DIEE, Università di Cagliari, Italy and INFM-S3, Modena, Italy

Pierluigi Bellutti
ITC, IRST, Microsystem Division, Via Sommarive 18, I-38050 Povo (Trento), Italy

Michele Muccini and Roberto Zamboni
CNR, ISMN, Via Gobetti 101, 40129 Bologna, Italy

Federico Rosei
INRS-EMT, Université du Québec, 1650 Boulevard Lionel Boulet, J3X 1S2 Varennes (QC), Canada

Arnaud Mantoux and Pascal Doppelt
Centre d’Etude de Chimie Métallurgique, CNRS 15 Rue G. Urbain, F-94407 Vitry sur Seine, France

(Received 16 December 2005; accepted 13 March 2006; published online 20 April 2006)

Bottom-contact tetracene light-emitting transistors employing a mercaptosilane derivative self-assembled monolayer as adhesive between gold concentric interdigitated source/drain electrodes and SiO2 gate dielectric are described. Devices that employ the mercaptosilane adhesive have a higher mobility and electroluminescence compared to those employing a standard metallic adhesive. This is rationalized in terms of the large, well interconnected grains found in tetracene films deposited on substrates using the mercaptosilane adhesive. Our work represents a step forward in the understanding of physical processes at semiconductor/metal and semiconductor/dielectric interfaces in organic devices. © 2006 American Institute of Physics. [DOI: 10.1063/1.2193468]

Electrical and optoelectronic devices such as field-effect transistors (FETs), light-emitting diodes, and photovoltaic cells based on organic active materials are of great interest for technological applications as well as for fundamental studies.1,2 Recently, another class of organic optoelectronic devices has been demonstrated, i.e., organic light-emitting transistors (OLETs).3–10 OLETs are appealing since they integrate the switching function of a transistor with light emission. Moreover, they are excellent test systems to investigate physical processes such as charge injection, transport, and electroluminescence in organic films.

Bottom contact organic FETs (OFETs) and OLETs (i.e., organic active film deposited on a patterned substrate) are suitable for fundamental studies since this geometry ensures high injection efficiency and prevents reaction between the metal and the organic film.11 OFETs and OLETs usually employ Au electrodes on a SiO2 gate dielectric. The poor adhesion of Au on SiO2 requires the use of a metal thin film as adhesion layer. This introduces a second organic/metall interface along the electrode wall and results in an increased electrode thickness, influencing both the growth of the organic film and the physical processes in the device. To avoid the metal adhesion layer, a low-cost and straightforward approach can be used, based on a self-assembled monolayer (SAM) of [HS–(CH2)3–Si–(OCH3)3], 3-mercaptopropyltrimethoxysilane (MPTMS).12–15 The application of MPTMS SAMs to OLETs may provide a better understanding of physical processes at the semiconductor/metal and semiconductor/dielectric interfaces.

Here, we report the fabrication and characterization of bottom-contact tetracene OLETs employing concentric Au interdigitated source and drain (S/D) electrodes, where a MPTMS SAM was used to promote Au adhesion on SiO2. A dedicated interdigitated electrode layout was designed. This geometry is suitable for OLETs as it maximizes the electroluminescence intensity. The concentric geometry allows to circumvent parasitic currents due to the unpatterned semiconductor film,16 permitting an unambiguous interpretation of the optoelectronic characteristics.

Heavily doped (0.01–0.02 Ω cm) n-Si wafers (gate electrode), covered with a thermal SiO2 layer (gate dielectric), were silylated by MPTMS.17 The reaction was performed in the gas phase to achieve a reproducible growth of the SAM.18 Silylation was followed by deposition of a 30 nm thick Au film and by a photolithographic definition of the S/D electrodes. For comparison, standard substrates using the same layout but having a metal film as adhesion layer were fabricated.19 Electrode definition was achieved via chemical wet etching.20 Hereafter, electrodes employing MPTMS as adhesion layer will be indicated as Au/MPTMS, and those employing Cr as Au/Cr. Tetracene (TCI, 98%) was used as source material. The deposition system and the apparatus for optoelectronic measurements have been described elsewhere.21

Figure 1(a) shows the layout of an interdigitated concentric S/D Au electrodes. Figures 1(b) and 1(c) display scan-
increasing gate-source voltages employing Au/Cr. The ratio of Au/MPTMS electrodes and 1 order of magnitude more intense for LETs using same bias on Au/Cr films.22 films exhibit a reduced surface roughness compared to Au/Cr substrates. The films have different morphologies. Au/Cr shows grains with a typical size of 15 nm. In the case of Au/MPTMS the grains have an inhomogeneous size distribution. Surface enhanced Raman spectroscopy had previously shown that, on SiO2, Au/MPTMS films are more continuous at the electrode interface, whereas those with Au/Cr have a higher rms roughness, i.e. 0.6 nm. This higher value may be attributed to the local restriction in roughness in the channel region of the two SiO2 substrates patterned with Au/MPTMS and Au/Cr electrodes. This result shows that the use of the molecular adhesion layer leads to a decrease of the contact resistance, in agreement with the literature.23

Figures 2(a) and 2(b) display optoelectronic output characteristics of tetrasene LETs employing Au/MPTMS and Au/Cr electrodes. The plots report drain-source current (Ids) and electroluminescence (EL), vs drain-source voltage (Vgs) for increasing gate-source voltages (Vgs). The hole FET mobility, μ, was calculated at the saturation using the following relationship:23

\[
|I_{ds,sat}| = \frac{W}{2L} \mu C_i (V_{gs} - V_T)^2,
\]

where W is the channel width, L is the channel length, C_i is the capacitance per unit area \((1.7 \times 10^{-8} \text{ F cm}^{-2}\) for 190 nm thick SiO2\)), and V_T is the threshold voltage. V_T ranges between \(-7\) and \(-10 \text{ V}\) for both kind of devices. The MPTMS adhesion layer leads to a higher mobility. The highest μ values observed from several samples, prepared in different deposition runs, were about \(1 \times 10^{-5} \text{ cm}^2/\text{V s}\) in those employing Au/Cr. The ratio \(I_{sat}/I_{off}\) is typically \(10^6\) for both kind of devices. Figures 2(a) and 2(b) reveal that, under the same bias (\(V_{ds} = -40\) and \(V_{gs} = -30 \text{ V}\)), the EL signal is one order of magnitude more intense for LETs employing Au/MPTMS electrodes compared to Au/Cr. In addition, with MPTMS, the EL generation requires lower \(V_{gs}\) and \(V_{ds}\). Figure 2(c) displays the linear dependence of the width normalized device resistance (RW) on the channel length (L) for Au/Cr and Au/MPTMS substrates. R is deduced from the inverse slope of the output curves in the linear region (at \(V_{gs} = -40 \text{ V}\)). The intercept with the y axis allows the evaluation of the specific contact resistance, which is \(\approx 2 \text{ MΩ cm}\) for Au/Cr and \(\approx 0.5 \text{ MΩ cm}\) for Au/MPTMS. This result shows that the use of the molecular adhesion layer leads to a decrease of the contact resistance, in agreement with the literature.23

Figures 3(a) and 3(b) display \(6 \times 6 \mu \text{m}^2\) atomic force microscopy (AFM) images of tetrasene films deposited on substrates patterned with Au/MPTMS and Au/Cr electrodes, respectively. The corresponding line profiles at the electrode step are shown in the insets. The two substrates lead to significantly different growth scenarios. As shown in the histograms reported in Figs. 3(c) and 3(d), in the channel region the grain size is larger and the grain size distribution is less homogeneous for films deposited on substrates patterned with Au/MPTMS electrodes. The grain perimeter is about 800 nm for substrates patterned with Au/Cr and about 2000 nm for those patterned with Au/MPTMS. On such substrates, films are more continuous at the electrode interface, with better interconnected grains, because of the lower electrode step. The images reported in Figs. 3(a) and 3(b) show films grown during the same deposition run, thus the different morphologies are related to substrate properties. To gain insight into this aspect, we measured the root mean square (rms) roughness in the channel region of the two SiO2 substrates. AFM measurements reveal that SiO2 substrates patterned with Au/MPTMS have a rms roughness of 0.2 nm whereas those with Au/Cr have a higher rms roughness, i.e. 0.6 nm. This higher value may be attributed to the local roughness.
dox reaction of Cr on SiO$_2$ that occurs during annealing. The surface roughness of the SiO$_2$ dielectric strongly influences the morphology of the organic film. Smoother surfaces favor the nucleation of larger islands, leading to films composed of larger grains. This implies a lower number of grain boundaries, which act as carrier traps that contribute to reduce the FET mobility.26,27 The larger size of the tetracene grains together with their improved interconnection at the electrode interface should increase the number of carriers injected and transported through the transistor channel. This would in turn increase the number of excitons available to emit light after electron-hole recombination. This is a plausible explanation for the increased EL intensity observed when MPTMS is employed as adhesion layer.

In conclusion, we fabricated OLETs employing a MPTMS SAM adhesion layer between SiO$_2$ gate dielectric and Au electrodes by a straightforward and low-cost method. To circumvent parasitic currents and to maximize the EL signal, we used concentric and interdigitated Au electrodes. The MPTMS adhesion layer, enabling the minimization of electrode thickness, reduces the influence of the prepatterned substrate on the growth of the organic active film, thus leading to better interconnected tetracene grains at the semiconductor/electrode interface. Moreover, the use of the molecular adhesion layer results in a smoother gate dielectric surface leading to increased tetracene grain size. Tetracene LETs employing a MPTMS SAM as adhesion layer exhibit significantly higher hole mobility and EL intensity, together with lower contact resistance, compared to standard substrates.

The authors acknowledge L. Lorenzelli (ITC) for mask design, A. Lui (ITC) for SEM imaging, P. Maccagnani (CNR), A. Bentley (Purdue Univ.), J. A. Miwa, and F. Vetrone (INRS) for critical reading of the manuscript, projects FIRB-RBNEO33KMA and FIRB-RBAU01TH2A_002 for funding. F.C. acknowledges the CBIE for a post-doctoral fellowship. F.R. is grateful to FQRNT and the Canada Research Chairs program for salary support.

15MPTMS reacts with the silanol groups at the SiO$_2$ surface via the –OCH$_3$ functionality of the –OCH$_3$ functional groups. This results in a Si–O–Si bond and the elimination of CH$_3$OH. This is a plausible explanation for the increased EL intensity observed when MPTMS is employed as adhesion layer.

FIG. 3. (Color online) $6 \times 6 \mu$m2 AFM images of tetracene films grown on substrates patterned with Au/MPTMS (a) and Au/Cr (b) electrodes. The left panels show film morphology in the channel (SiO$_2$) and the right panels show film morphology on the contacts (Au). In the inset of each figure is reported the corresponding line profile at the electrode step. The images were acquired with a Solver Pro AFM (NT-MDT) in semiconduct mode using NSG-01 Si cantilevers. Histograms showing the grain size distribution in the channel for tetracene films grown on substrates patterned with Au/MPTMS (c) and Au/Cr (d) electrodes.

In conclusion, we fabricated OLETs employing a MPTMS SAM adhesion layer between SiO$_2$ gate dielectric and Au electrodes by a straightforward and low-cost method. To circumvent parasitic currents and to maximize the EL signal, we used concentric and interdigitated Au electrodes. The MPTMS adhesion layer, enabling the minimization of electrode thickness, reduces the influence of the prepatterned substrate on the growth of the organic active film, thus leading to better interconnected tetracene grains at the semiconductor/electrode interface. Moreover, the use of the molecular adhesion layer results in a smoother gate dielectric surface leading to increased tetracene grain size. Tetracene LETs employing a MPTMS SAM as adhesion layer exhibit significantly higher hole mobility and EL intensity, together with lower contact resistance, compared to standard substrates.