Fabiola Navarro Pardo

Fabiola

Tel.: +1 (514) 228 6866
Fax: +1 (450) 929-8102
fabiola.navarro@emt.inrs.ca

The development of advanced materials holds the key to ultimate progresses in energy conversion and storage, which are crucial for meeting the challenge of increased global energy demand and at the same time reduce the dependence on fossil fuels. Nanomaterials, in particular offer unique properties or combinations of desired properties that can be applied in a range of energy devices. My previous research was focused on the synthesis of functional carbon nanomaterials and their compounding within polymers by means of a variety of processing techniques. Characterization of these nanocomposites allowed me to have a better understanding of the structure-property relationship in polymer nanocomposites obtained with different carbon nanostructures. My research at NFL is closely related to my previous work and I am currently focused on the design of nanostructured materials with applications on solar energy conversion devices. Specifically, I am working on the development of one-dimensional nanostructures for their use in different components of photoelectrochemical cells.

Research Interests:
-Electrospun hybrid composites
-Design, synthesis and characterization of functional nanostructures
-Dye-sensitized solar cells
-Photoeletrochemical cells for hydrogen generation

Education
PhD in Materials Science. Universidad Autónoma del Estado de México, 2013.
MSc in Chemical engineering, Polymers specialty, Instituto Tecnológico de Ciudad Madero, 2010.
BSc in Chemical engineering, Processes specialty, Instituto Tecnológico de Ciudad Madero, 2008.

NFL Publications

  1. F. Navarro-Pardo, D. Benetti, J. Benavides, H.G. Zhao, S. G. Cloutier, V.M Castano, A. Vomiero, Rosei, F. 2017).Nanofiber-structured TiO2 nanocrystals as a scattering layer in dye-sensitized solar cells. ECS J. Solid State Sci. Technol. 6 (4) N32-N37 (2017).
  2. F. Navarro-Pardo, L. Jin, R. Adhikari, X. Tong, D. Benetti, K. Basu, S. Vanka, H. Zhao, Z. Mi, S. Sun, V. Castano, A. Vomiero, and F. Rosei.Nanofiber-supported CuS nanoplatelets as high efficiency counter electrodes for quantum dot-based photoelectrochemical hydrogen production. Mater. Chem. Front.,1, 65 (2017). (PDF).
  3. F. Navarro Pardo, D. Benetti, H.G. Zhao, V.M. Castano, A. Vomiero, and F. Rosei.Platinum/Palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer. Journal of Power Sources,335, 138–145 (2016). (PDF).
  4. Adhikari, L. Jin, F. Navarro-Pardo, D. Benetti, B. AlOtaibi, S. Vanka, H. Zhao, Z. M., A. Vomiero, and F. Rosei.High efficiency, Pt-free photoelectrochemical cells for solar hydrogen generation based on “giant” quantum dot. Nano Energy,27, 265–274 (2016). (PDF).

 

 

 

 

Other peer-reviewed publications

  1. F. Navarro-Pardo, A. L. Martínez-Hernández, C. Velasco-Santos. Carbon nanotube and graphene based polyamide electrospun nanocomposites: A Review. J Nanomat, 2016, Article ID 3182761 (2016).
  2. Hernandez, T. Lozano, A. B. Morales, F. Navarro-Pardo, P. G. Lafleur, S. Sanchez-Valdes, G Martinez-Colunga, L. Morales-Zamudio, P.  de Lira-Gomez. Improvement of toughness properties of polypropylene filled with nanobentonite using stearic acid as interface modifier. J Compos Mater, 51(3) 373–380 (2016).
  3. Pérez-Rocha, A. B. Morales-Cepeda, F. Navarro-Pardo, T. Lozano-Ramirez and P.G. Lafleur. Carbon fiber composites of pure polypropylene and maleated polypropylene blends obtained from injection and compression moulding. Int J Polym Sci, 2015, Article ID 493206 (2015).
  4. Del Angel, A. B. Morales, F. Navarro‐Pardo, T. Lozano, P. G. Lafleur, S. Sanchez‐Valdes and R. Zitzumbo. Mechanical and rheological properties of polypropylene/bentonite composites with stearic acid as an interface modifier. J Appl Polym Sci, 132(30), 42264 (2015).
  5. Pérez-Rocha, A. B. Morales-Cepeda, F. Navarro-Pardo, T. Lozano-Ramírez and P. G. LaFleur. Carbon fiber composites of pure polypropylene and maleated polypropylene blends obtained from injection and compression moulding. Int. J. Polym. Sci., 1 (2015).
  6. F. Navarro-Pardo, G. Martínez-Barrera, A.L. Martínez-Hernández, V.M. Castaño, J.L. Rivera-Armenta, F. Medellín-Rodríguez and C. Velasco-Santos. Influence of 1D and 2D carbon fillers and their functionalisation on crystallisation and thermo-mechanical properties of injection moulded nylon 6,6 nanocomposites. J. Nanomater., 1 (2014).
  7. F. Navarro-Pardo, G. Martínez-Barrera, A.L. Martínez-Hernández, V.M. Castaño, J.L. Rivera-Armenta, F. Medellín-Rodríguez and C. Velasco-Santos. Effects on the thermo-mechanical and crystallinity properties of nylon 6,6 electrospun fibres reinforced with 1D and 2D carbon. Materials, 6(8), 3494-3513 (2013).
  8. F. Navarro-Pardo, J. Laria, T. Lozano, A. B. Morales-Cepeda, P. G. Lafleur, S. Sanchez-Valdes, F. Rodríguez-González. Shear effect in beta phase induction of polypropylene in a single screw extruder. J. Appl. Polym. Sci., 13(4), 2932-2937 (2013).
  9. F. Navarro-Pardo, G. Martínez-Barrera, A.L. Martínez-Hernández, V.M. Castaño, J.L. Rivera-Armenta, F. Medellín-Rodríguez and C. Velasco-Santos. Nylon 6,6 electrospun fibres reinforced by amino functionalised 1D and 2D carbon. IOPCS: Mater. Sci. Eng., 40, 012023 (2012).

 

 

 

 

Book Chapters

  1. F. Navarro-Pardo, A.L. Martínez-Hernández and C. Velasco-Santos. Graphene/polymer nanocomposites: crystal structure, mechanical and thermal properties. In Aliofkhazraei, M., Ali, N., Milne, W. I., et al. (Eds.). Graphene Science Handbook: Nanostructure and Atomic Arrangement. (pp. 77-98). CRC Press (2016).
  2. Navarro-Pardo, A.L. Martínez-Hernández and C. Velasco-Santos. Functionalization of carbon nanotubes and graphene with amines and biopolymers containing amino groups. In V. K. Thakur, & M. K. Thakur (Eds.), Chemical functionalization of carbon nanomaterials: chemistry and applications (pp. 538-570). CRC Press (2015).
  3. F. Navarro-Pardo, A.L. Martínez-Hernández and C. Velasco-Santos 2015. Polymer nanocomposites reinforced with functionalized carbon nanomaterials: Nanodiamonds, carbon nanotubes and graphene. Polymer canocomposites based on inorganic and organic nanomaterials, (pp. 347-399) Wiley-Scrivener (2015).